上智大学理工学部リエゾンオフィス（SLO）の目指す道

SLO長 清水伸二（機械工学科教授）

上智大学理工学部リエゾンオフィス（通称SLO）は、2001年11月1日に設立され、早や1年が経過した。2002年4月に設立記念シンポジウムを開催するにともない、ホームページを立ち上げるなど、広報活動も広く展開しているが、まだ十分なネットワークが確立されたとは言い難いと思われる。しかしながら、このような状況下でありながら各種依頼が多数寄せられ、産業界からの期待の大きさを感じ、更に有効活用して頂くべき、体制を整えていく必要性を感じているところです。

本特集では、SLOの今後目指すべき道について考えてみることとし、今後取り組むべきテーマの提案、産業界への貢献が期待できる実用研究テーマ、是非使わせたい研究成果などについて、SLOメンバー各位に執筆いただきました。ご覧いただき、今後のSLOへの期待、ございませんとお感じいただき、今後の目指すべき道をより明確にしていきたい。これが本特集の意図でもあります。

初心にかえり、SLOが掲げている本組織の特徴を列挙すると以下のようになります。

(1)広汎な分野・技術レベルに対応
理工学部：5学科（機械、電気・電子、物理、数学、化学）、生活科学研究所
大学院：7研究科（機、電気・電子、応用化学、数学、物理、生物学）

(2)環境変化への対応
情報、材料、生命科学

(3)社会変化への対応
工芸生の調和を目指す

(4)技術の立地条件でサービスを受けやすい、行いやすい
セミナー/講座/シンポジウム/技術相談/共同研究

(5)広範な社会貢献を目指す
中学校、高等学校への教育支援、生涯学習プログラムの企画・実施

(6)国際的ネットワークを生かした対応
(7)コンパクトな組織でOne Stop Serviceの実施
研究機関とのネットワークを持っていない中小企業にもきめ細かな対応
(8)強力なテクノセンター（研究教育支援センター）の全面支援
研究装置の設計、試作、組立、調整までの一貫サービス体制

(1)と(2)で述べるまでもなく、本特集でもSLOのカバー分野の広さはお感じ頂けるものと思う。また、本特集でも取り上げているが、環境への取組みなど、SLOがコーディネートし、理工学部の協力を持って推進するプロジェクトの立ち上げ準備も開始している。(3)については、まだ、多くの実績はないが、本学はそのための十分な環境を有している。その必要性については、本学の季刊誌「ナビガータ」51巻1号の「文庫学術特集」の誌上シンポジウム「生産技術と文化的融合」(12-46頁)でも明らかにされている。是非ご一読頂きたい。また(6)の国際的ネットワークも、本学であればその環境であり、大いに活かしていきたい。(8)に掲げられている理工学部の研究教育支援センターであるテクノセンターは、他大学には無特徴と言える。殆どの研究装置は外注するところなく、学内で設計製作し、世界に一つしかない最先端の研究装置として研究に利用されており、各分野の学会で、研究論文はもとより研究装置面でも高い評価を受けている。本センターについては、工業技術会の月刊工業雑誌「機械と工具」2002年9月号92-93頁に「共同のものづくり教室テクノセンター」として紹介されている。是非ご一読頂きたい。

以上、本特集を通して、SLOをご理解いただき、大いに有効活用して頂きたい。それが、本学理工学部の更なる発展につながり、更に皆様のお役に立てることになるものと確信しております。
総務省公募研究「生物に学ぶハイブリッド情報処理 パラダイムに関する研究」への応募

SLO学外企画委員 伊藤裕康

過去20年間の研究活動を通じて、SLO学外企画委員の一人（伊藤裕康）が学んだアリゾナ大学での役立つ情報処理に関する研究、および、田中教授がCNN研究を行なった上智大学での成果を比較対照し、アトランダモデル処理に関する研究がの2つのアプローチの違いを明確にし、それらの研究の発端をアリゾナ大学やカルフォルニア大学などと国際的な研究連携を考慮した上で、技術的な進歩を期待した研究提案の動機を示した。本研究では、人間の情報処理、聴覚系、脳前頭葉系の学ぶハイブリッド（デジタルオプティカル、アナログデジタル）情報処理研究を行うことにより、 EAR デジタルモデルであるコンピュータビジョンシステムアーキテクチャの比較研究を手始めに、聴覚系、脳前頭葉系から学ぶ新しいパラダイムとその情報処理研究することにより提案書にまとめました。普通の受託研究では、各研究室単体で公募研究を提案し、受託するのが従来の方法であったため、情報処理研究の提案書がまとまって提案したのは、設立者であるSLO学外企画委員会が大型研究公募のコーディネート活動の一環として取り組もうとする意図の現れでした。特に、意図的で挨拶的な研究推進、研究の推進、研究費削減（最低限を除く）の目的として、データマイニングの対象をレセプト情報として、医者や患者の行動パターンを分析（クラスタリング）、データを予測する本研究を、単なる論文作成のための研究ではなく、大量の実レセプト情報（レセプト解析会社より提供）を用いて、解析、マイニング、分散型データベース、視覚化インフェースのすべてを含むプロトタイプのプログラムを作成し、それを技術移転（TLO）化することを目指しています。さらに、国際的水準での共同研究として、アリゾナ大学の博士課程で研究経験のある伊藤裕康（現電51歳）が、直感であるB.R.Hunt名義教授より持ちかけられた、欧州解像度情報復元理論を土台として、その理論がどのように「生物に学ぶパラダイム情報処理」に活かされるかという点を検討し、新しい視覚系あるいは網膜情報処理システムの工学モデルを構築するというのが提案の由来です。今後も、平成14年度は、採択されずに終わったが、来年度も、陣容をさらに再挑戦の姿勢をとることにしています。

環境問題への取り組みの提言

SLO学外企画委員 篠崎 隆

今から200年ほど前、伊能忠敬が10年余の歳月を費やし、日本の海岸線3万キロを従徃で測量し日本地図を完成した。ただただ尊敬する他はないのでありますが、同時に当時の海岸はさぞ荒しかったのではなかろうかと想像することが多い今この頃です。2年ほど前か ら、偶然海岸清掃活動の道具を開発することになり、あらかじめ調査するにあつ「白砂青松今いず」と言うばかり、日本の海岸浴場1550箇所、およそ管理の行き届いた所を除けば、海藻、髄ツリ発するぐらい汚れている所もあります。

海岸は正に現代世相の鏡といいないもので、快適さを求め続けてきた人間生活の壊れがたまっ た場所のように思えます。この海岸の汚迪士尼が多くは日本各地の恵まれた河川由海に運ばれて、波で打ち上げられたゴミですが、風速や雨雪は困難を持ち続けます。さらに海水浴客の多くが多くの砂浜となると、ビーチの砂浜や、花火カス等が黒くなった、これらは細かすぎて清掃が困難な故、どんより汚れが汚れていくことになります。また食品の包装類、ペットボ
トル等のプラスチックは紫外線等で劣化が進み細分化し、かつて分解されることなく食物連鎖に纏め込まれ、何時か人の体内に入り込まないとは限らない。考えてもみれば恐ろしい事になるかもしれません。

話は変わりますが、大気中の二酸化炭素が急速に増えたのも200年前、素人ならこのままままでは人類の危機は近いのではと心配になってくる。と言って心配しているだけで、何の問題解決に繋がらない分、自分で出来る事から、まずは見える環境問題、海岸ゴミの清掃から出発し、無関心だからねじ曲げないマナーを取り戻すことから始めてみたいものです。

1）海岸清掃の実態

初めに海岸の汚れの実態を数値で示してみよう。1990年から継続して、日本クリーンアップ活動組織の正式団体JEAN（クリーンアップ全国事務局）のデーターから一部を示すが、表のようになる。JEANのデーターは、毎年決まった場所での人の手で集めたゴミをカウントする方法をとっている。従って劣化し細分化したプラスチック類はカウントするのでも困っているが、おおきな物、この量は砂との混合で詰まることが出せるものであるから心配されます。

海岸清掃は管理責任者である自治体が自ら実施するか、業者に委託するかの二つのケースであり、いずれも予算の枠に縛られ、海岸利用者のボランティアに頼ることも少なくない。道路ローラーのような大型清掃機を導入している自治体も少なくないが、費用、メンテ、先着等の問題があり必ずしも生かし切れているとはいいがたいでしょう。

2）清掃作業の技術的問題

海岸ゴミは様々な。大西洋ゴミで簡単にかたくても話ではない。特に清掃作業にとっては厄介なゴミは漁具類、油ム、ロープ類で、欠点は個体に絡みつくものは機械の故障の原因となり悪いからです。またこの材料等も小さすぎて清掃機に拾い上げることが難しい。そこで多少原始的ではあるが誰にでも扱え、シンプルで故障しにくい車両式ビーチクリーナーを開発したので紹介します。図1で示すように、ATV（不規則地走行用パーキー）で清掃用アタッチメントを牵引する構造で、軽量と言うもポイントになる。と言うのも、砂浜は水際、陸地に大別出来、それぞれ多彩な微生物が多き生息している貴重な場であり、大型ビーチクリーナーで砂を踏み固めるのは問題があるとされているからです。

アタッチメントは、漁具、漁具類、漂着海草類を引っ掛けて除去するレーキと、砂とゴミを空中に飛ばし、砂で砂とゴミを分離するタイプの2種を使い分けます。特に、後者はATVの機動力を生かす、100m四方程度の砂浜は20〜30分で清掃が可能です。砂の状態（乾燥度合い）にもよるが、拾いのメッシュを細かいためにすればタバコのフィルター程度のゴミは困った事に面白いほど取れる。

3）今後の清掃技術

さて集めたゴミの最終処分は市町村の焼却炉で消去する事になりますが、自然ゴミ、金属、ガラス、プラスチックが混在してしまったままではまたまた公害の元になりかねません。

とくに草分野作業が必要なので、残念ながらこの作業は今の所手作業以外の方法がない。加えてゴミのなかには鋭利な金属類も混じっているので手作業では衛生上も問題があります。

この作業はいくらボランティアと云ってもあまりに不衛生かつ忍耐を要するので、分別機（仮称）があればぜひとも欲しいと希望です。海岸清掃はもっともとある種の達成感があるので、ハンデで取り扱い性のよい分別機を開発導入できれば楽しい作業にもなるはずです。

<table>
<thead>
<tr>
<th>アイテム名</th>
<th>固体重量割合</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>タバコ</td>
<td>13.87</td>
<td></td>
</tr>
<tr>
<td>砕片</td>
<td>10.77</td>
<td></td>
</tr>
<tr>
<td>砕片小（1m³以下）</td>
<td>8.63</td>
<td></td>
</tr>
<tr>
<td>食料所</td>
<td>5.91</td>
<td></td>
</tr>
<tr>
<td>砕片</td>
<td>4.99</td>
<td></td>
</tr>
<tr>
<td>トースト</td>
<td>4.06</td>
<td></td>
</tr>
<tr>
<td>シート等</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>ふた・キャップ</td>
<td>3.44</td>
<td></td>
</tr>
<tr>
<td>食品の袋</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>ガラスの破片</td>
<td>3.08</td>
<td></td>
</tr>
<tr>
<td>花火</td>
<td>2.81</td>
<td></td>
</tr>
<tr>
<td>食料ビン</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>自分ゴミその他</td>
<td>29.6</td>
<td></td>
</tr>
</tbody>
</table>
流れ解析技術の役割とそれへの期待

機械工学科教授 柴田漱

近年、電子計算機技術の発達とともに流れ動象をシミュレートできるプログラムの開発が盛んに行われており、ある程度プログラムの研究開発は膨大かつ大規模な計算機の必要が少なくなる。この計算機により流れ現象をシミュレートする分野を数値流体力学（CFD：Computational Fluid Dynamics）と言う。流れ解析を理論的に行うために、このCFDが企業でも設計開発のツールとして使用されている。しかしながら、現場の使用者から次のような声をよく聞く。
1.市販のCFDプログラムは高価で、熟練に時間かかる。
2.多少大雑把でよいので、パソコンレベルで簡単な計算をしたい。
3.シミュレーション結果の信頼性が分からない。
4.思考錯誤の中ですでに改良開発された製品の流れ解析技術に基づいたものを知っている。
5.流れ解析に基づいた設計が容易であるユーザーからのクレーム処理をしたい。

などである。さらに、実際の機械やシステムに関して、「普段見えない機器内の実際の流れや機械の動きの様子を見よう」などの声をよく聞く。このような要望に基づき、数値解析と実験の有用性を探求するための研究グループでは、効率的および実験的流れ解析技術の開発とそれらの適用研究を行っている。

ボンプやエンジンなどのものの内部流れや自動車や飛行機などのものの外部流れを理論的に解析すると次のようになることが分かれる。
1.渦の有無やほく離位置などの流れの状態
2.圧力分布、抗力や揚力などものを受ける力
3.流れによって振動を起こされるものの振動状態とその周りの流れの状態

これらの情報を知る方法として、渦法と境界

と共に高効率一方で作り続けた20世紀の

流れを計算する自然に要求される技術が必要とされ

れの時代になってきたように思われます。まず

近傍の流れから取り込んで役に立つ技術

を世の中に提供して行きたいものですね。

で、より良いものでよいので

ある。効率をめぐり続ける20世紀の

流れを計算する自然に要求される技術が必要とされ

その時代になってきたように思われます。まず

近傍の流れから取り込んで役に立つ技術

を世の中に提供して行きたいものですね。
的材料と製品開発のための基礎データを得たいとの事であった。気体が内部を流れるの
で、気体の流動状態、特に大きな大きな原因の一
と考えられるが、会社では流れ解析を行うことが
ないそうで、こちらに依頼された。この
ような共同研究で得られる企業にとっての
メリットは大きく、特許申請にもつながる。
研究によっては1-2ヶ月オーダーで結果を
早く見られるものもあるが、大学としては最終的に計画で
難しい。約1-2年の計画の基礎研究
が企業と大学との共同研究として行っている
であろう。一方、大学にとってのメリットは、現場での
問題点を認識して基本的な問題
設定を行い、次にその問題に関しての基礎研
究を行い、研究論文、場合によっては特許と
して発表することである。

今後も基本的な流れ解析技術や計算手法の
開発は大学を中心に行われようが、その
結果を共同研究として企業にどの程度浸透さ
せることができるかが問題となる。さらに、
企業からの要望も念頭に置き、大学でプログラ
ム開発を行うことも必要である。実験的流
れの解析技術に関しては、ここで紹介した
PIV計測技術から三次元非定常流れに対し
て、どの程度の信頼性が得られるかが今後重
要である。本報で紹介した理論的および実験
的流れ解析技術の目的や意義を理解してもら
い、各分野で役に立てたいと願っている。

次世代フォトニックデバイスに関する研究

電気・電子工学科教授 下村和彦

最近の光通信技術の急速な進展とともに、
波長軸及び時間軸上での光多軸化技術を駆使
したフォトニックネットワークの構築が実現
しつつあります。その実現に向けては波長領域
及び時間領域での各種の光信号処理技術が
不可欠となります。こうした処理技術には
信号速度やパルス形状などに依存せずに動作
する光デバイスの実現が必要不可欠です。

我々の研究ではこれら光デバイスの実現
を目的とした研究を行っています。

本研究則では、有機金属蒸着成長装置を用
いて光デバイスの先の成熟成長を行ってい
ます。材料は主にGaAs, GaP, GaInP系結晶を
作製しています。選択成長は、内面において大面積で相異なる材料を
一回の成長で作製する技術であり、半導体レ
ーダーと酸化技術を基にしてする方法が用いられて
います。マスクで結晶表面を覆われていると、
適切な成長条件では基板表面が露出している
部分のみ結晶成長が起こります。マスクの

図1: 選択成長用マスクパターンと層状成長スイッチしてアレイ導波路

図2: アレイ導波路の波長分割スイッチへの応用